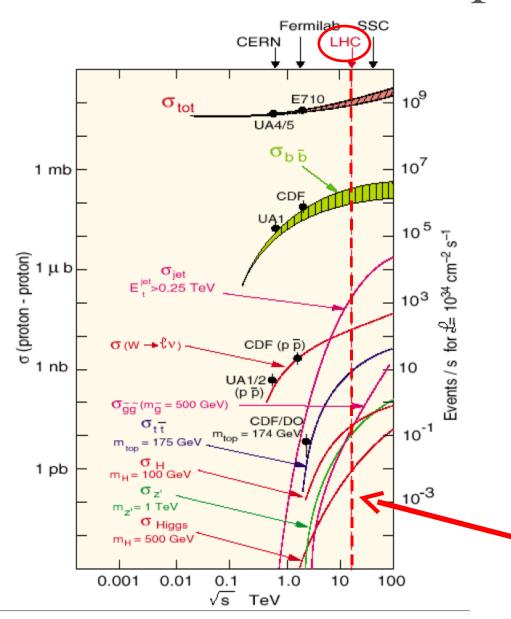
Trigger in ATLAS and CMS

Christos Leonidopoulos CERN-PH


On behalf of the ATLAS and CMS collaborations

LHC New Physics Signatures Workshop January 5-11, 2008, Ann Arbor

What are we trying to do?

- Find the most interesting physics signals at LHC
- Store them for off-line processing

What do we expect to see?

~ 10 0111 0	$\mathcal{L} =$	10^{34}	${\rm cm}^{-2} {\rm s}^{-1}$
-------------	-----------------	-----------	------------------------------

Process	(nb)	Productio n
Inelastic	10^{8}	10 ⁹
$bar{b}$	5×10 ⁵	5×10^{6}
$W \to \ell \nu$	15	100
$Z \to \ell \ell$	2	20
$t\bar{t}$	1	10
H(100 GeV)	0.05	0.1
Z'(1TeV)	0.05	0.1
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1
H(500 GeV)	10-3	10-2

You are here

What is the problem?

- 1) We don't keep all these events → Selection
- 2) Old Physics happens more often than New Physics
- 3) New Physics buried under a ton of Old Physics

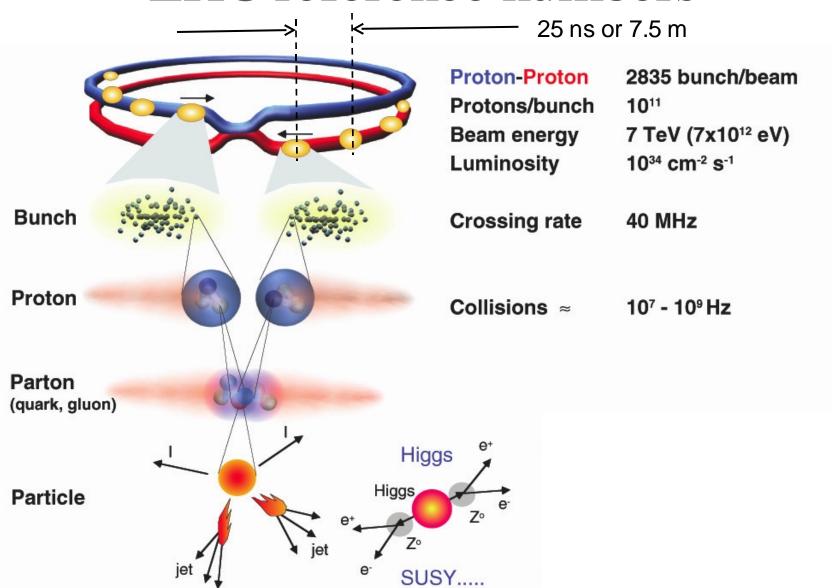
We don't keep all these events

How many do we keep? About 150-200 Hz

Why only so few? Not enough resources!
 200 Hz at 1-2 MB/event → Up to 25 GB per minute
 Up to 4′000′000 GB of storage needed per year
 Plus: about 30 secs to reconstruct every event off-line

"Interesting" physics occurs at ~10, 1 or < 1 Hz
 We are only interested in a (tiny) fraction of all events
 We *don't* really want to keep all these events

Old Physics: more likely than New Physics



$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$
-------------------------	-----------------------------------

Process	(nb)	Productio n
Inelastic	10^{8}	rates (Hz) 10 ⁹
b ar b	5×10 ⁵	5×10 ⁶
$W \to \ell \nu$	15	100
$Z \rightarrow \ell \ell$	2	20
$t\bar{t}$	1	10
H(100 GeV)	0.05	0.1
$Z'(1\mathrm{TeV})$	0.05	0.1
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1
H(500 GeV)	10-3	10-2

It is challenging (to say the least) to find these rare exciting events

LHC reference numbers

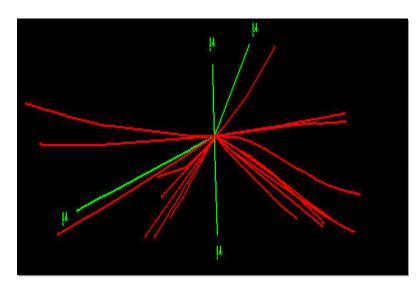
New Physics buried under Old Physics

• Interaction rate:

$$R = \mathcal{L} \times \sigma_{\text{tot}} = 10^{34} \text{ cm}^{-2} \text{s}^{-1} \times 80 \text{ mb} \sim 0.8 \text{ GHz}$$
(*) Total inelastic cross section (±20%)

• Distance between bunch crossings:

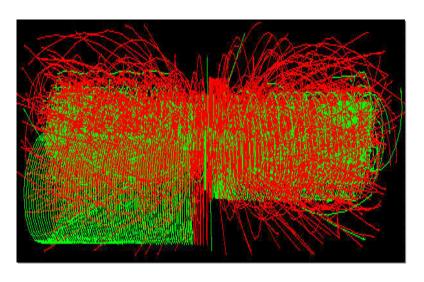
$$\Delta t = 25 \text{ ns (or 7.5 m)}$$


• Non-empty bunch crossings:

2835 out of 3564 (or
$$\epsilon = 79.5\%$$
)

• Average # of interactions per (non-empty) crossing:

$$\bar{n} = R \times \Delta t / \epsilon \sim 25$$

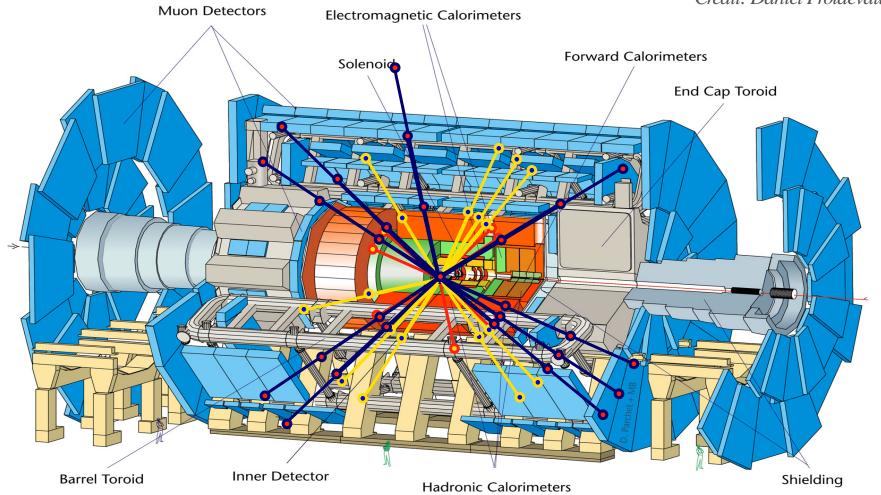

New Physics buried under Old Physics

For every exciting interaction...

$$H \rightarrow ZZ \rightarrow 4\mu$$

Reconstructed tracks with $p_T > 25 \text{ GeV}$

...expect 25 non-exciting overlaid interactions (at ~1000 tracks per event)


Reconstructed tracks with $p_{\tau} > 2 \text{ GeV}$

Pileup: serious problem at LHC at high luminosities

D712/mb-26/06/97

The 25 ns challenge

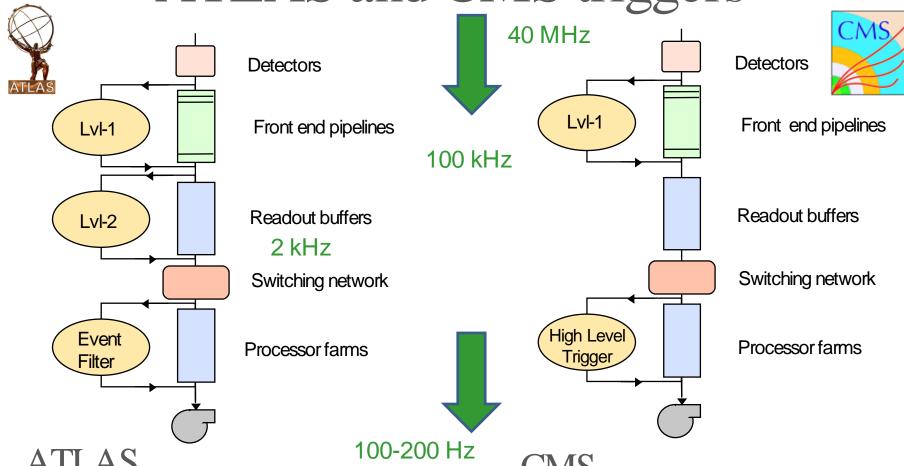
Credit: Daniel Froidevaux

Interactions every 25 ns ...
In 25 ns particles travel 7.5 m

Cable length ~100 meters ...

In 25 ns signals travel 5 m

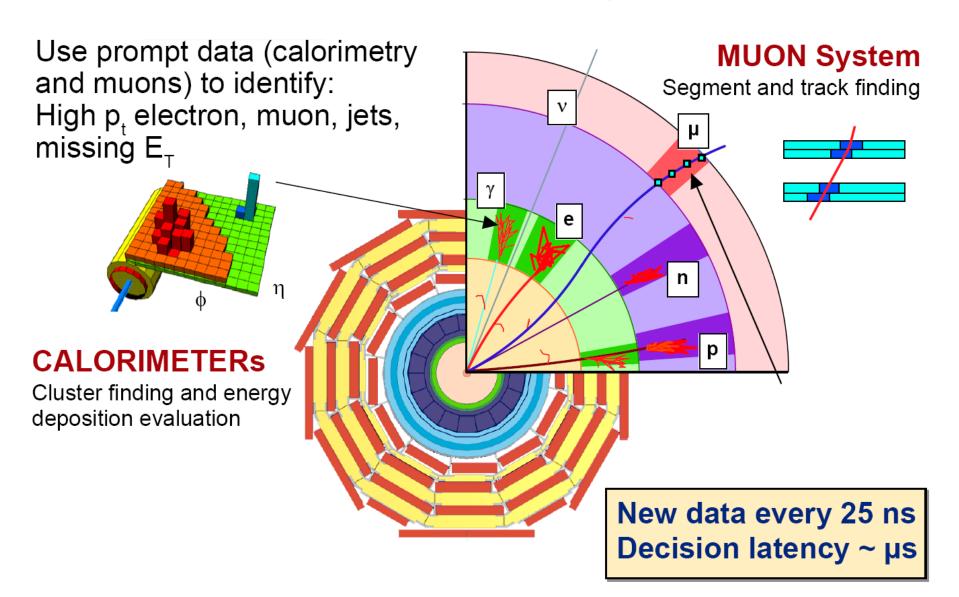
What are we trying to do? (v.2)


- Select the most interesting physics signals at LHC 150-200 Hz out of ~ 1 GHz of "noise" (selection: 10⁻⁷)
- In real time
- Store them for off-line processing

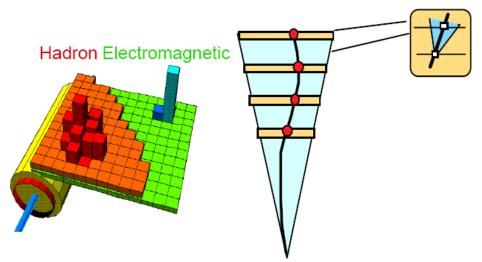
Background is a Disease

Meet the Cure

ATLAS and CMS triggers



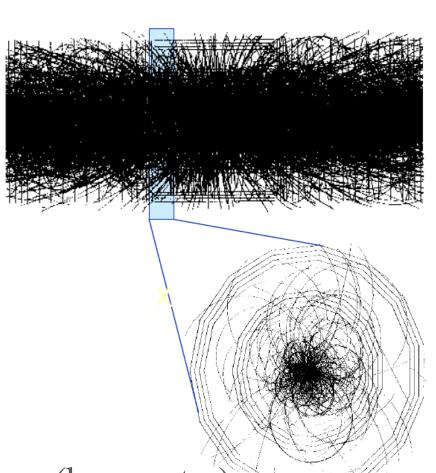
ATLAS


- 3 levels (traditional design)
- L1: hardware, firmware
- L2 + EvF: high-level software

- L2, L3: merged into HLT
- L1: hardware, firmware
- HLT: high-level software

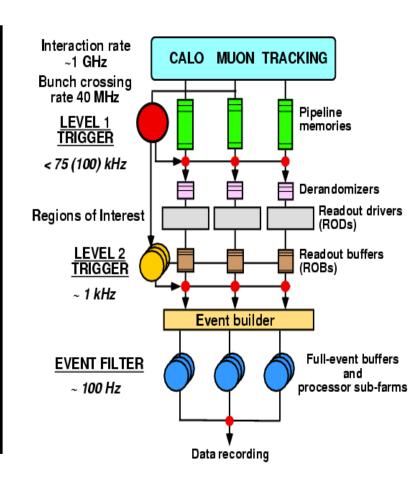
Particle-id at Level-1

Why not use tracker info at Level-1?

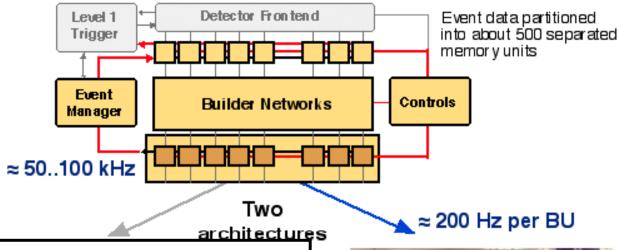

Thoughts of including tracker info at L1 for SLHC

Calorimeter, muon detectors:

- Thousands of channels
- Patter recognition fast


Tracking, vertexing detectors:

- Millions of channels
- Patter recognition slow
- Reserved for later triggering stages (lower rates)



ATLAS High Level Trigger

- L2 and L3 (Event Filter) form High Level Trigger (HLT)
- L2 (~500 CPUs) accesses ~10% of event info (full granularity) seeded by L1 objects
- Event Filter (~2000 CPUs) accesses full event using "off-line quality" algorithms
- Custom L2-steering system
- L1: 2.5 s, L2: 40 ms, L3: 4s

CMS High Level Trigger

- L2 and L3 merged into
 High Level Trigger (HLT)
- HLT (~2000 CPUs) accesses full event info (full granularity) seeded by L1 objects using "off-line quality" algorithms
- L1: 3.2 s, HLT: 40 ms

Farm of processors ONE event, ONE processor

- High latency (larger buffers)
- Simpler I/O
- Sequential programming

ATLAS vs. CMS Triggers

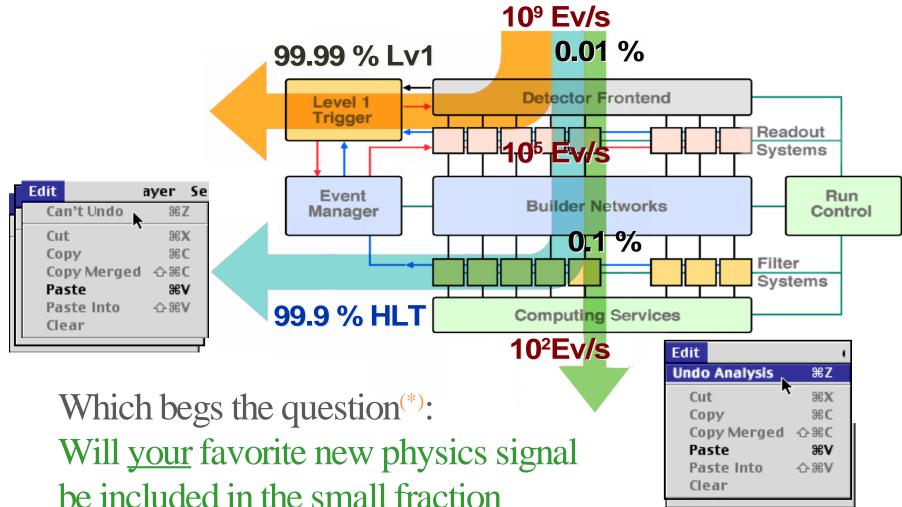
- More traditional, safer design
- Concrete steps & requirements for each of Level-2, Level-3 steps of selection
- Accesses fraction of event at L2 (small throughput)
- But: Custom controls and separate farms for L2, L3

More flexibility

Full event info (and offline reconstruction) as early as L2 HLT: continuous software environment in single farm

• But:

Large data throughput (and switching network) needed Risky design decision (at the time)



ATLAS vs. CMS Triggers

Overall:

- Very similar performances
- Trigger bandwidth determined by detectors and physics programs, not trigger design
- Systems still differ (two farms vs. single farm at HLT) so: commissioning and debugging also different

Trigger: A tricky business

of selected events? (unexpected signatures always a worry)

(*) LHC upgrade: 1B CHF, CMS+ATLAS detectors: 1.2B CHF

What are we trying to do? (v.3)

- Select the most interesting physics signals at LHC 150-200 Hz out of ~ 1 GHz of "noise" (selection: 10⁻⁷)
- In real time
- Store them for off-line processing
- Don't screw up

What to avoid

- Killing the interesting physics altogether
- Biasing the selected event samples:

Uncertainties in topologies of rejected events

Introduction of large systematic errors

arXiv:hep-ex/0502042v3 9 Feb 2007

Reduction of the Statistical Power Per Event Due

Abstract

Measurements

A cut on the max the number of event decreases the statistic parameter cut in the The small loss of events due to a moderate upper lifetime cut is accompanied by a large loss of information, because not only a few events outside the allowed time window are lost, but also the information that there were only a few. This can have dramatic effects on the precision of the measurement. As shown

to technical limitations, has the same effect. In this note we describe and quantify the consequences of such a cut on lifetime measurements. We

How to build good triggers

Ask old people

Learn from previous experiments

How to build good triggers

- No single silver bullet
- Using common sense (and trigger studies)

General strategies

- As simple as possible
- As inclusive as possible
- Robustness
- Redundancy

Simplicity

- Construct triggers with simple conditions
- Simple triggers easier to commission
 - debug
 - understand

General strategies

- As simple as possible
- As inclusive as possible
- Robustness
- Redundancy

Be inclusive

- Better to have one trigger covering similar analyses
- Even better: covering other, unrelated analyses
- Should be able to discover the unexpected as well

Strong social aspects, often ignored

- Competition inside experiment
 - One (wo)man's signal is another (wo)man's background It's best for your analysis to rely on a popular trigger
- Inertia: people get used to "old" triggers
- Safety: people tend to ignore "new" triggers

General strategies

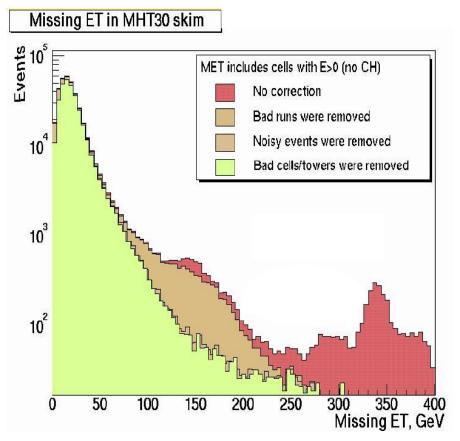
- As simple as possible
- As inclusive as possible
- Robustness
- Redundancy

Your favorite trigger should be

deployed online as early as possible

Robustness

- Make sure your trigger can run for *many* events
 Including pathological events
 Including events with x10 more hits than MC predicts
- Make sure your trigger is immune
 To beam conditions, detector problems


Missing E_T : the popular trigger for

- SUSY particles
- Dark matter candidates
- But also: neutrinos (so: Ws, Higgs, etc)

General strategies

- As simple as possible
- As inclusive as possible
- Robustness
- Redundancy

Missing E_T at DØ

It takes a long time to

- Commission the detector for data-taking
- Remove all problematic runs
- Understand noisy environment
- Discover (and remove)
 problematic channels

Missing E_T :

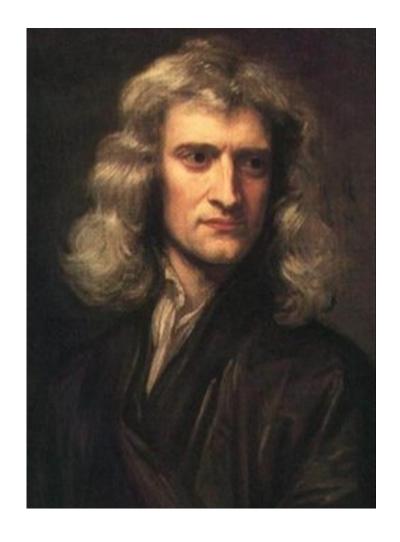
- Not ideal for startup
- Typically the last trigger to be commissioned

Redundancy

- Make sure your signal can be selected by more than one triggers
 - Helps to understand biases
 - Ensures that if a trigger has problems (rates too high or instability) you still get your events

General strategies

- As simple as possible
- As inclusive as possible
- Robustness
- Redundancy


How is the trigger different at LHC?

Trigger trends

Event Size [Bytes]

Luminosity, rates, event sizes: all increased by ~an order of magnitude

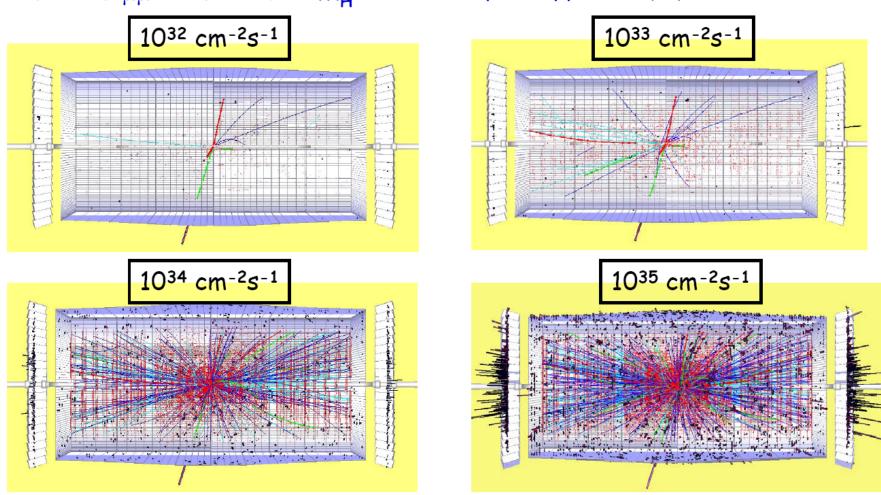
'If I have seen further it is by standing on the shoulders of Giants''

Evolution in computing

Advances in

- Networking (Ethernet, Terabit/s networks)
- PC industry (computing power and memory abundance)
- Software standards (Linux, http, XML, C++, Java) offer affordable, modular, scalable, upgradable solutions

LHC trigger: scalable


The trigger at ATLAS and CMS evolves with luminosity Adjusts to increases in:

- DAQ capacity (L1 rate)
- CPU-power needed at HLT

 By adding/upgrading PCs as necessary

Luminosity effects

 $H{\to}ZZ \to \mu\mu ee$ event with M_H = 300 GeV for different luminosities

LHC trigger at low luminosities

Lower luminosities allow us to trigger

- with lower thresholds, looser requirements
 e.g. no isolation on leptons
- on physics that we cannot trigger on later e.g. B physics or other low- p_T physics

Building triggers

• pp inelastic collisions: mainly hadrons at ~few GeV Interesting physics: typically with larger p_T Make sure we can still trigger on events with many soft particles

Signatures (event topologies) compatible
 with new (or old but still interesting) physics
 Simple objects: leptons, jets, photons
 More advanced objects: taus, b-jets

• Trigger's "sine qua non": High efficiency on signal events

Trigger examples

Nota Bene:

- Impossible to cover all LHC New Physics channels & their triggers
- ATLAS and CMS focusing on early luminosity studies
- Listing only unprescaled "physics" triggers here Ignoring triggers for calibration, monitoring, etc. (~20% of total)

Electrons and photons

ATLAS: Very early luminosity 10³¹ cm⁻² s⁻¹

Trigger	Thresh (GeV)	Notes	
Electrons rate: 40 Hz —Photons rate: 10 Hz			
1e	10		
2e	5		
1	20		
1	20	isolation	
2	10		
3	10		

	·				
Trigger	Thresh (GeV)	Notes			
Electrons/Photons – Total rate: 30 Hz					
1e	17				
1e	15	isolation			
2e	12				
2e	10	isolation			
1	40				
1	30	isolation			
2	20				
2	20	isolation			
$High-E_T$ EM	80	looser cuts			
Very high- E_T EM	200	looser cuts			

- Electrons & photons share the same reconstruction code
- Electrons also have an associated track (so: thresholds can be lower)

Muons

ATLAS: Very early luminosity 10³¹ cm⁻² s⁻¹

Trigger	Thresh (GeV)	Notes
Muoi	ns – Total rate: 2	25 Hz
1	6	
1	10	isolation
2	6	

CMS: Early luminosity 10^{32} cm⁻² s⁻¹

Trigger	Thresh (GeV)	Notes
Muoi	ns – Total rate: 5	50 Hz
1	16	
1	11	isolation
2	3	

- Low threshold crucial for *B* physics
- Topological ATLAS trigger (including *B* physics) at 15 Hz

- Muons are typically cleaner than electrons
- Favorite trigger for many channels with even lower thresholds

Physics with leptons and photons

Higgs discovery (E/W symmetry breaking scale)

$$115 < m_H < 250 \text{ GeV/}c^2$$
, with $H \to \gamma \gamma, WW^*, ZZ^*$

$$H(120) \to \gamma \gamma : E_T^{\gamma} > 50 - 60 \text{ GeV/}c^2$$

$$H \rightarrow WW^*, W \rightarrow \ell \nu : p_T^{\ell} > 30 - 40 \text{ GeV}$$

$$H \to ZZ^*, Z \to \ell \ell: p_T^{\ell} > 40 \text{ GeV}$$

CMS trigger efficiencies (%)

Signal process	Isolated single	Relaxed single	Isolated double	Relaxed double
	photon	photon	photon	photon
HLT: $H \rightarrow \gamma \gamma (m_H=120 \text{ GeV})$	80.5	76.8	75.8	75.7
L1*HLT: $H \rightarrow \gamma \gamma (m_H = 120 \text{ GeV})$	78.8	76.8	58.7	72.7

Suggested triggers by ATLAS and CMS adequate for all channels

Physics with leptons and photons

 Randall-Sundrum model searches with dileptons, diphotons (extra dimensions)

$$Z' \rightarrow ee, \mu\mu$$
 (TeV scale: stabilize Higgs sector)

triggers with (one or) two electrons, muons, photons

Increase trigger efficiency by loosening up trigger requirements for large EM deposits

CMS trigger efficiencies (%)

Signal process	single high energy EM	Single very high energy EM
$Z' \rightarrow ee \ (M \ge 200 \ \text{GeV})$	67	7.0
$Z' \rightarrow ee \ (M \ge 500 \ \text{GeV})$	91	69
$Z' \rightarrow ee \ (M \ge 1000 \ \text{GeV})$	94	92
$Z' \rightarrow ee \ (M \ge 2000 \ \text{GeV})$	90	97
$G \rightarrow \gamma \gamma \ (M \ge 2000 \ \text{GeV})$	91	97

80 GeV 200 GeV

Physics with leptons

Rare or forbidden decays

 $B_S \to \mu\mu$ dimuon trigger (lowest possible threshold)

$$Z \rightarrow e\mu, e\tau, \mu\tau$$

triggers with combinations of different leptons

Leptonic flavor violation $\tau \to \mu \gamma$ single muon or + triggers

Physics with leptons

• W'spin-1 boson, heavy partner of W

single-muon trigger

Jets, missing E_T , total E_T

ATLAS: Very early luminosity 10³¹ cm⁻² s⁻¹

Trigger	Thresh (GeV)	
$Jets, MET, Total E_T$ $Total \ rate: 40 \ Hz$		
1j	100	
4j	23	
MET	70	
Sum E _T	340	

CMS: Early luminosity 10^{32} cm⁻² s⁻¹

Total rate: 30 Hz

HLT path	Thresholds (GeV)
Single-Jet	200
Double-Jet	150
Triple-Jet	85
Quad-Jet	60
E_T	65
Acopl. Double-Jet	125
Acopl. Single-Jet + ₽T	(100, 60)
Single-Jet + E_T	(180, 60)
Double-Jet + E_T	(125, 60)
Triple-Jet + Æ _T	(60, 60)
Quad-Jet + E_T	(35, 60)
$H_T + \not\!\!E_T$	(350, 65)
Single Jet Prescale 10	150
Single Jet Prescale 100	110
Single Jet Prescale 10 ⁴	60
VBF Double-Jet + ₺т	(40, 60)
SUSY 2-jet+₽ _T	(80,20,60)
Acopl. Double-Jet + E_T	(60, 60)
	· •

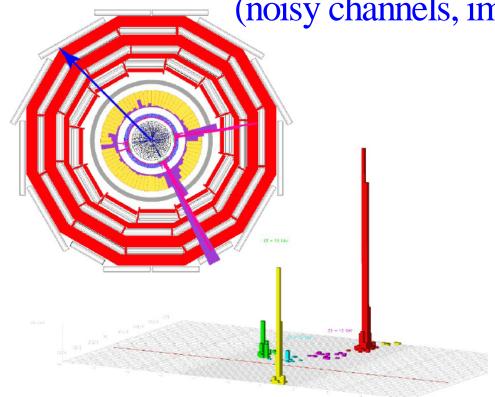
- (Multi-)jets are another favorite trigger for BSM signals
- MET is a difficult trigger to commission (already discussed)
- Total E_T can be used to study biases of jet algorithms

Physics with jets, total E_T

Black holes

Events with high-multiplicity, energy deposit multi-jet triggers

• Searches for new resonances (SUSY or Exotica) $\text{multi-jet triggers} + \text{MET} + \text{total } E_T$ or multiple-lepton triggers


Di-jet mass
 Look for excess compared to SM distribution
 single- or di-jet triggers

Physics with MET

• Dark matter, lightest supersymmetric particle

MET trigger: will take time to commission

(noisy channels, improper calibration, etc)

Taus, b-jets

ATLAS: Very early luminosity 10³¹ cm⁻² s⁻¹

Trigger	Thresh (GeV)	Notes		
Taus, b	Taus, b-jets – Total rate: 45 Hz			
1	60			
1	45	isolation		
+	45, 40			
+	20, 30	isolation		
Plus: +, +e, +jets and b-jets				

CMS: Early luminosity 10^{32} cm⁻² s⁻¹

Trigger	Thresh (GeV)	Notes
Taus, b	-jets – Total rate	e: 17 Hz
1	80	
+MET	30, 35	
2	40	
+	20, 15	
+e	20, 12	

Plus: b-jets (displaced vertex or soft)

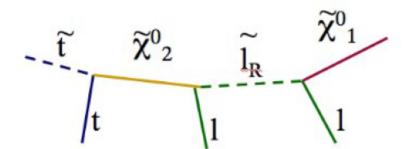
Total investment in combined triggers:

ATLAS: 50 Hz (10³¹ cm⁻² s⁻¹), CMS: 20 Hz (10³² cm⁻² s⁻¹)

- Taus and b-jets popular for Higgs (and top) analyses
- More difficult to commission and fine-tune, not suitable for startup

Physics with taus, b-jets

• MSSM Higgs: h^0, H^0, A^0, H^{\pm}


 $H \rightarrow bb$, $\tau\tau$ b-jet, single- and double-tau triggers

CMS trigger efficiencies at 10^{32} cm⁻² s⁻¹

	$\mathrm{H}^{\pm} ightarrow au u$		QCD
	$M_H = 200 \text{GeV}/c^2$	$M_H = 400 \text{GeV}/c^2$	$\hat{p_T}$ 120-170
Level-2 E_T cut	59%	81%	6%
Level-2 Jet Reconstruction			
and Ecal Isolation	81%	85%	53%
Level-2.5 SiStrip Isolation	67%	76%	27%
Level-3 SiStrip Isolation	70%	72%	18%
HLT	23%	38%	0.15%
L1 * HLT	16%	29%	-

Stop production

Excess in reconstructed top distributions b-jet triggers

Fit everything into O(100) Hz

 How should the bandwidth be shared among the large number of available triggers?

A difficult question – many things to consider:

Are triggers inclusive enough?

Which triggers are used by what physics analyses?

What are the experiment's priorities?

Example #1:

"Experiment X has a stronger chance of discovering the Higgs first"

Example #2:

"Rumors are that experiment Y is seeing a bump on channel Z. We must increase bandwidth of corresponding trigger"

Epilogue

• The trigger is a dynamic creature, made by human beings

Bound to imperfections, common sense, inertia and strong personalities

Must evolve with time, luminosity increases and better detector understanding

It requires dedicated studies by analysis users

• But it remains the single most important item in hadron experiments: what makes the difference between discovering New Physics at LHC or not

Epilogue

